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Mahalanobis Distance and Variable Selection

to Optimize Dose Response::

by

Dan H. Moore II, Deborah E. Bennett, Andrew J. Wyrobek and

Debbie Kranzler, Biomedical Sciences Division, Lawrence

Livermore Laboratory, Livermore, California 94550

SUMMARY

A battery of statistical techniques are combined to iul-

prove detection of low-level dose response. First, Mahalanobis

distances are used to classify objects as normal or abnormal.

Then the proportion classified abnormal is regressed on dose.

Finally, a subset of regressor variables is selected which maxim-

izes the slope of the dose response line. Use of the techniques

is illustrated by application to mouse sperm damaged by low doses

of x-rays.

This work was supported by the United States Department of Ener-

gY* contract number w-7405-ENG-48 and the Environmental Protec-
tion Agency Pass Through Agreement EPA-IAG-D5-E681-AN.
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INTRODUCTION

This study is concerned with developing a statistical

methodology which will help to improve the detection of low-level

effects of harmful agents. The problem is divided into three

parts. First, it is necessary to classify objects exposed to an

agent as “normal” or “abnormal” based on a vector of measure-

ments. Initially the objects are unclassified, but for each

there is available an independent, discrete measurement (the dose

of the agent) which is assumed to be related to the likelihood

that the object is abnormal. Next, the relationship between the

dose of the agent and the degree of abnormality (the response) is

to be quantified. Finally, a subset of variables from the meas-

urement vector is to be selected which optimizes the dose-

response relationship. This methodology can be used in measuring

the effects of possibly hazardous environmental agents such as

air pollution, exposure to chemicals or radiation, or in testing

a new drug for possibly harmful side effects.

Our method uses a variety of statistical techniques

which are not new but their combination is and has proven useful

in a recent practical application. We begin by describing this

application.

DESCRIPTION OF THE DATA

Chemical mutagens and x-irradiation affect the morphology

-2-



of sperm heads in a way that can be distinguished under a micro-

scope (Wyrobek and Bruce 1978). Normally a biologist studies

each sperm

to whether

normal is

under a microscope and makes a subjective judgement as

the sperm is “normal” or “abnormal”. The percent ab-

then plotted against dose and used to find an estimate

for a “doubling dose”, that dose which leads to twice the back-

ground (O dose) abnormal percentage. In our experiment

groups of 3 mice received acute, testicular doses of O, 30, 60,

90 or 120 rads of x-irradiation. For each mouse 50 sperm were

chosen at random, photographed and enlarged. Eleven measurements

were made on each of the 750 sperm head silhouettes (Figure 1).

Initially the sperm used in this study were not classi-

fied by a biologist since our goal was to try to develop a system

which is more sensitive than the subjective one currently used.

Thus, our first problem was to find a way of relating the meas-

urements to the dose of x-rays.

ESTABLISHING A DOSE-RESPONSE RELATIONSHIP

A useful measure of the difference between a p-variate

observation vector x = (xf, ... ,x?) and a group mean vector ii=

(%,, ... , x,) is the Mahalanobis distance (M-distance) defined

by

M(x) = (X -%)’ S-’ (X -~) ,

where S is the group sample covariance matrix. This measure can
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be thought of as a distance in a p-dimensional space which takes

into account the scales of the measurements as well aa correla-

tions between pairs.

We pooled the 150 observations from 3 mice with O rad ex-

posure to form a control group. Each observation can now be ex-

pressed as an

expect that,

high doses of

vations from

distance as a

M-distance from the control group (O rad) mean. We

on the average, observations from mice receiving

radiation will have greater M-distances than obser-

❑ice receiving low doses. We can also treat the M-

dependent variable and regress it on dose. Figure 2

shows the result when the mean M-distances for the 15 mice are

regressed on the 5 dose levels in our experiment. The regression

line in the figure has intercept 10.87 and slope 0.14.

A point estimate for the doubling dose is the intercept

(A) divided by the slope (B). In this case the estimated

doubling-dose is 76 rads. This is roughly equivalent to the 70

rad doubling dose established by the conventional method based on

visual scoring of 500 sperm per mouse.

Replicate measurements at each dose can be used to meas-

ure the goodness-of-fit of the regression line to this data. This

is accomplished through the F-statistic

~ ni(~i-?i)2/(k-2)

i ii
i=l j=]

,, is the responsewhere Y-

the ith dose level, ?;

(Yij-~i)2/(N-k)

(mean M-distance)

the

ith dose level, ~; the linear

of the jth mouse at

mean response for all 3 mice at the

regression predicted response, n;=3
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the number of mice at each dose level, k=5 the number

levels and N=15 the total number of mice.

In our case F = 0.77 with 3 and 10 degrees of

of dose

freedom

leading to P = 0.54 for the appropriateness of

(Subsequentlythis P value will be referred to

Although this test indicates that the linear

the linear model.

as P-linearity.)

model provides an

adequate fit to the data,

than that estimated using

There is evidence

the estimated doubling dose is no lower

current methods. .

that mean M-distances are not very

robust against large “outlier” values from measurements on single

sperm. This is shown in the figure where one of the mice at 90

rads has a very large mean M-distance, which was caused by a sin-

gle outlier among the 50 sperm measurements which contributed to

the mean. In addition, biologists are unfamiliar with M-

distances and would prefer to see results expressed as percent

abnormal sperm. Thus, we seek a method for using M-distances to

classify sperm as normal or abnormal. This should also reduce

the sensitivity of the measure to large outliers.

CLASSIFICATION OF INDIVIDUAL SPERM

The M-distances for sperm in the control group are ident-

ical to the squared radii defined by Gnamdesikan (p.172).

Therefore, if we assume that the vector of measurements x has a

multinormal distribution, the M-distances will have approximately

a chi-squared distribution with degrees of freedom equal

number of variables. Unfortunately, our data contain

-5-
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“outliers” with very large M-distances for the assumption of mul-

tinormality to hold so that we cannot use chi-square critical

values. However, we can find a value which will arbitrarily

classify a proportion of the control group sperm as abnormal. If

the value 28 is chosen 7 of the 150 M-distances for control sperm

(4.67%) will be classified as abnormal. This compares with the

upper 5% chi-square value (with 11 d.f.) of 19.675. When this

value is used to classify the sperm, and the resulting mean per-

cent abnormal for each mouse is regressed on dose, we obtain the

result shown in Figure 3. We see a dramatic reduction of the

doubling dose to 34 rads and an increase in P-linearity to 0.98.

In thfs case detection of low-level effects has been improved by

using M-distances for classification rather than as a quantita-

tive measure of abnormality.

REDUCING THE NUMBER OF MEASUREMENTS

Now we wish to determine whether any significant loss in

detection ability occurs when fewer variables are used. Standard

techniques for comparisons among subsets of variables cannot be

applied here since the

normal) is not fixed.

dependent variable (percent classified ab-

It varies depending on the critical value

selected for M-distances which, in

variables included. With the help

tine, ALLNR, it is easy (although

turn, depends on the number of

of Jane Gentleman’s subrou-

tine consuming) to compute re-

gressions using all possible combinations of subsets of vari-
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ables. With eleven variables this requires couputing

11

()(71 11

[)

11
+ +.*.+ =2 - 1 = 2047

11 10 1

regressions. This is easily accomplished on a computer. For

each subset of variables a critical value was selected for M-

distances which arbitrarily classified 5 X of the zero-rad sperm

as abnormal. This facilitates comparisons between the resulting

regressions. In comparing regressions we restricted attention to

subsets for which P-linearity was 0.8 or higher (guaranteeing

that linear regression gives a good fit to the data) and for

which the estimated doubling dose

dence limit of that found by using

limit can be found as follows:

is within the upper 95% confi-

all eleven variables. This

A point estimate for doubling-

dose is A/B which has variance approximately equal to

var A Aavar B 2A COV(A,B)

var(A/B) = —+—-
Ba Bq Ba

(Kendall & Stuart,Vol. l,p.232). Under the assumption that A/B

has an approximate normal distribution, an approximation for the

upper 5% confidence limit is given by A/B + t * s(A/B), where t

is the upper 5% point of a t-distribution with (n-2) d.f. and

s(A/B) is the estimated standard deviation of the doubling dose.

In our case n=15 means so that d.f.=13. Thus, the upper

95% confidence limit for our estimated doubling dose is 55.87.

Figure 4 shows all combinations of variables which satisfy the

twin criteria p-linearity > 0.8 and doubling-dose < 55.

-7-



*

*

Most of the points in Figure 4 represent combinations of

variables which statistically are equivalent. However, we can

reduce this set by noting that the ideal regression has P-

linearity = 1.0 and doubling dose = O. We prefer points near

these values over those farther away. A convex hull of admissi-

ble points may be constructed by connecting those sharing equal

numbers of variables and nearest to the (1.0,0) corner of the

figure. Admissible points are defined as those for which there

are no other points (for the same number of variables) below and

to the right of them. A point is inadmissible if another point

(with the same number of variables) has better P-linearity and

lower doubling dose. Figure 5 shows convex hulls of admissible

points.

COMPARISONS AMONG REGRESSIONS

Admissible points may also be compared. First, we con-

vert the doubling dose to a p-value based on a test of how signi-

ficantly better it is than the point using all 11 variables. A

rough test of this is given by

Doubling dose (subset S) - Doubling dose (all 11 variables)
tE -----------------------------------------------------------

Standard error (Doubling dose subset S)

which will have an approximate t-distribution with (n-2) d.f. A

simple method for combining the two measures of merit is the op-

tfmali.tycoefficient defined by
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Optimality Coefficient =

where P. is the P-value for doubling dose test and $ is P-

linearity.

point, and

optimality

An optimality coefficient can be determined for each

for each subset of k variables there will be a minimal

coefficient.

A plot of these minima against the number of variables is

shown in Figure 6. The figure shows that adding variables im-

proves performance, as measured by the optimality coefficient, up

to five variables. If more than five variables are used perfor-

mance deteriorates. Thus, we are able to find an “optimal” sub-

set of variables. This optimal subset is at least no worse than

all other subsets and may be better (with probability greater

than zero).

COMPARISON WITH CURRENT CLASSIFICATION METHOD

It is interesting to compare classification based on M-

distances with subjective classification by experienced biolo-

gists. The biologists were asked to classify a subset of the 750

pictures of sperm heads without knowing the M-distances or com-

puter classification. A sample of 100 sperm were selected by the

statisticians and classified by the biologists with the results

shown in Table I. In this table M-distances are based on the

five best variables, as determined by minimizing the optimality

coefficient. The table shows that all samples classified as ab-

normal have M-distances greater than 12. The majority of the
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normal samples (67 out of 84 or 80%) have M-distances less than

12. The interesting question is whether the 17 sperm classified

as normal by biologists but with M-distances greater than 12 are*

normal or abnormal. Visually they cannot be distinguished from

● other normal specimens, but quantitatively they differ from the

bulk of the normals.

DISCUSSION

We believe that the idea of using M-distances from a con-

trol group as a measure of response is a new and useful one. It

can be applied to many situations, particularly those where the

exact nature of the response cannot be predicted or described

prior to the experiment. In general, M-distances will not be

normally distributed so that it will be necessary to transform

a

.

them prior to quantifying the dose-response relationship. We

found it helpful to use M-distances to classify objects as normal

or abnormal and to regress the percent classified abnormal on

dose. This may not be appropriate in other situations but it

does succeed in removing the effects of extreme M-distances on

the regression. In our case it allowed us to express the results

in terms familiar to biologists.

A second new idea is the use of two criteria to select a

subset of variables which maximize the dose-response relation-

ship. The criterion of goodness-of-fit seems a natural one. It

is also natural to seek sets of variables which minimize doubling
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dose. Statisticians may prefer to select subsets based on the

criterion of slope of the regression line, whose standard error

can be determined explicitly rather than by approximation. We

chose to use doubling dose for two reasons. First, doubling dose

is familiar to biologists and results expressed in its terms can

be compared with current capabilities. Second, the standard er-

ror for doubling-dose,which is used in determining the P-value

used in comparisons, includes uncertainties due to both slope and

intercept; thus it may provide a more reliable guide than using

slope alone as a criterion.

There are many ways the twin criteria of P-linearity and

P-doubling dose could have been combined; we chose one that

measures the two-dimensional Euclidean distance from the optimal

point. Various weighting schemes could be applied, depending on

whether linearity is more

tion in doubling dose.

for selecting a subset of

be applied due to varying

important or less important than reduc-

We only wish to suggest a useful method

variables when standard methods cannot

regressions.

Our results suggest that careful measurement of sperm

head dimensions combined with application of the statistical

methods described here can lead to increased detection of low-

level effects. This is due to the increased sensitivity of a

quantitative measurement system over a subjective, visual one.

i.
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Table 1. Distribution of M-distances in a Sample of 100 Sperm

Biologists” Classification
M-Distance*

<12

12-14

14-16

16-18

18-20

20-22

22-24

24-26

26-28

28-30

>30
--------

Totals

No~al
.---.-

67

6

6

1

0

1

2

0

0

0

1
-----

84

Abnormal
--------

0

2

1

2

.
1

1

0

0

1

1

7
-----

16

* M-distance based on fiVe “best” variables (Ll, L2, L4, Wl, Area)
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LEGENDS TO FIGURES

Figure 1. Enlarged drawing of mouse sperm head and 11 measure-

ments.

Figure 2. Regression of mean Mahalanobis distance on dose in

rads. Mahalanobis distance is based on the 11 dimensions of Fig-

ure 1 and and measured from the mean for a control group of 150

sperm from three

50 sperm from each

mice exposed to zero rads. Means are based on

of three mice at each dose level.

Figure 3. Regression of percent abnormal sperm on dose in rads.

Sperm were classified as abnormal if their Mahalanobis distance

is greater than 28. The doubling dose estimated from this re-

gression line is 34.

Figure 4. Plots of doubling dose vs. P-linearity for regressions

satisfying the criteria: P-linearity > 0.8 and estimated dou-

bling dose < 55. Each point represents a subset of the 11 vari-

ables shown in Figure 1. All points are statistically equivalent

but we prefer those with low doubling dose and

Figure 5. Convex hulls of admissible points.

high P-linearity.

These points are a

subset of those in Figure 4 and include only those for which

there is no point, with the same number of variables, which iS

both below and to the right of it.

Figure 6. Optimum subsets of variables as determined by the op-
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timality coefficient (OC). The OC is equal to the minimum Eu-

clidean distance between points on the convex hulls of Figure 5

and the “ideal” point (1.0,0). Doubling dose has been converted

to a P-value prior to measuring the OC. The five variables

(1,2,4,5,9)have the lowest OC and represent our best estimate of

the most sensitive subset of variables.

t
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5 6

1. L, - lengthalongaxis
2. Lq – lengthtotipofhook
3. L; – lengthtotailattachmentsite
4. L4 – lengthtopointofmaximum width
5.“Wl - maximum width
6. W2 - widthtotipofhook
7. D, - lowerdiagonal
8. 02 – upperdiagonal
9. Area
10.Perimeter
11.Shape= (Perimeter)2/(4rsArea)

2

Dan Moore, et al..—

Fig. 1
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